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concentration (46, 47): at the high peptide:lipid molar ratios
(∼1:15) used in most solid-state NMR experiments AM2-TM
exists almost exclusively in the tetramer state in the tetramer-
monomer equilibrium, as shown by 19F spin diffusion NMR
data (48, 49) and analytical ultracentrifugation data (46). Taken
together, these data indicate that both in simple PC membranes
and in the complex viral membranes, the oligomeric state ofAM2-
TM is tetrameric and is not the cause of the dynamics change.

The ability of the eukaryote-mimetic viral membrane to
immobilize a classical TM helical bundle (50) at physiological
temperature offers significant opportunities for structure deter-
mination of membrane proteins by solid-state NMR. So far with
few exceptions (51), membrane protein SSNMR studies that
involve synthetic lipids use one- or two-component lipid bilayers
without cholesterol, which create unfavorable dynamic proper-
ties of proteins that need to be remedied by low-temperature
experiments. In cases where more native membrane extracts were
used, the most common choices are Escherichia coli lipids (52),
asolectin (53), and purple membrane lipids (54, 55), none of
which have the immobilizing properties of the viral membrane.
The purple membrane is noteworthy, as it is the matrix in which
bacteriorhodopsin (bR) forms immobile trimeric crystalline
arrays. However, the purple membrane consists of ether-linked
diphytanoyl lipids that do not have a phase transition between-
120 and 80 �C (56). bR immobilization is thus due to its dense
packing, despite the fluidity of the purple membrane. The virus
envelope-mimeticmembrane is the onlymembrane composition
identified so far to directly immobilize proteins. This membrane
mixture contains a high percentage of cholesterol (30 mol%) and
does not have unsaturated lipids. Both factors suppress domain
formation (57), so that the membrane is most likely in a single
liquid-ordered phase. This is supported by the 31P static spectra,
which show a single chemical shift anisotropy pattern at each
temperature (Figure S1 of the Supporting Information). Irre-
spective of the detailed physical properties of this membrane, the
fact that it suppresses whole-body motion and consequently
enhances NMR spectral resolution and sensitivity is unambig-
uous. Structure determination of eukaryotic membrane proteins
is thus both more biological and more favorable for solid-state
NMR in this membrane mixture.

The effects of the viral membrane on the AM2-TM conforma-
tion are interesting. 13C and 15N chemical shifts indicate that the
viral membrane does not affect the average conformation (peak
position) of most sites except for lipid-exposed side chains but
reduces the conformational heterogeneity of the protein. The
latter is manifested by the narrow line widths of the room-
temperature spectra of the protein in the viral membrane
compared to those observed in frozen PC membranes (Figure 6).
The viral membrane may reduce the protein conformational
distribution by virtue of its larger viscosity, which creates a higher
energy barrier for conformational excursion of the protein. The
line narrowing may also partly result from small-amplitude local
motion of the protein, as manifested by the 5-10% lower order
parameters from the rigid-limit value of 1.0 (Figure 3).

At 243 K, in the gel phase of the viral lipid membrane, the
protein shows 15N spectra similarly broadened compared to
those of the frozen DLPC-bound M2 samples (Figure S2 of
the Supporting Information). We hypothesize that the signifi-
cantly altered lipid environment below the phase transition
causes heterogeneity in the protein, whether it is in the viral
membranes or in the one-component PC membranes. It should
be mentioned that such low-temperature line broadening, which

has been widely observed in SSNMR spectra, is still poorly
understood, and further studies are necessary to elucidate the
contributions to low-temperature line widths.

The observed chemical shift perturbation of G34 and V27 by
the membrane composition change is unlikely to be due to
specific cholesterol binding, again because of the very small
number of cholesterol molecules bound per tetramer (39, 40).
Instead, it most likely reflects the intrinsic conformational
flexibility of G34 and V27 in response to the environment. G34
is the site at which a helix kink of∼15�was observed as a result of
amantadine binding (43), where the C-terminal segment became
less tilted than the N-terminal segment. By inference, the down-
field 15N isotropic peak upon amantadine binding (Figure 6) is
also due to the kinked helices. This means that the two G34 15N
peaks in the apo viral membrane result from the coexistence of
straight and kinked helices, which is also suggested by static 15N
spectra of apo M2 in oriented DMPC membranes (17). The
growth of kinked and less tilted helices is consistent with the
larger thickness of the viral membrane, by reducing the hydro-
phobic mismatch between the protein and the membrane. Since
amantadine and the viralmembrane affect the helix orientation in
the same direction, the drug-complexed peptide in the viral
membrane shows only the kinked conformation. Figure 6e-h
depicts the proposed AM2-TM orientations under the four
membrane-drug conditions, where the populations of the
straight and kinked helices are estimated from the relative
intensities of the two G34 peaks in the 2D spectra. The fact that
the G34 15N chemical shift in the viral membrane is perturbed by
amantadine in the same direction as the peptide in the DLPC
bilayer also indicates that the peptide retains the similar amanta-
dine sensitivity as in model membranes.

In influenza-infected host cells, the M2 protein does not
concentrate in raft-like microdomains but is thought to prefer
the raft-nonraft interface, in contrast to hemagglutinin and
neuraminidase, which localize in detergent-resistant mem-
branes (40, 58). However, in the virus envelope, the level of M2
protein is known to be low, indicating that the virus envelope
presents little disordered phase into which M2 can partition and
that most M2 proteins reside in a liquid-ordered phase similar to
that used here. Therefore, studies of M2 proteins in cholesterol-
rich membranes are biologically relevant, in addition to being
spectroscopically favorable.

In conclusion, a membrane mixture mimicking the eukaryotic
cell membrane in general and the influenza virus envelope
composition in particular is found to immobilize the whole-body
uniaxial rotation of the M2 transmembrane helical bundle. The
use of this cholesterol-rich eukaryotic membrane mixture should
greatly facilitate solid-state NMR structure determination of
membrane proteins in lipid bilayers, by allowing experiments
to be conducted near physiological temperature without dynamic
broadening, giving significantly enhanced spectral resolution
and sensitivity. The reduction of dynamic disorder by the
addition of cholesterol may also be relevant for X-ray crystal-
lography of membrane proteins. This study underscores the
importance of studying membrane proteins in the most native
lipid membrane.

SUPPORTING INFORMATION AVAILABLE
31P spectra of the viral membrane, 15N one-dimensional

variable-temperature spectra, and 2D 13C-13C correlation spec-
tra of AM2-TM. This material is available free of charge via the
Internet at http://pubs.acs.org.
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Fig. S1. Static 
31

P direct-polarization spectra of AM2-TM containing viral membranes as a 

function of temperature. The width of the chemical shift anisotropy is indicated on the right. The 

membrane broadens significantly at 243 K, which correlates with the 
15

N line broadening of the 

protein, indicating that the membrane phase property strongly affects the protein conformational 

averaging and conformational distribution.  
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Fig. S2. 
15

N CP-MAS spectra of LAGI-M2TMP in the viral membrane from 303 K to 243 K. 

The spectra show the same monotonic intensity increase with decreasing temperature as the 
13

C 

spectra in Fig. 5. In addition, the 
15

N spectra exhibit pronounced line broadening around 243 K, 

consistent with the large 
31

P chemical shift anisotropy increase around 243 K. This suggests that 

the protein line broadening is due to the phase behavior and disorder of the viral membrane at 

low temperature.  
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Fig. S3. 
13

C chemical shifts of AM2-TM in viral membranes (red) versus DLPC bilayers (black). 

(a) Selected regions of the 2D spectra. The data were obtained at 303 K for the viral membrane 

samples and 243 K for the DLPC samples. (b) Selected 1D cross sections.  

 


